
447

Tuning Storage Chapter 13:	
Foundation
by Volker Herminghaus

Basics About Tuning Storage Foundation13.1	
Having read the chapter about SAN storage, Moore's law and the advancements in disk
performance your expectations about performance tuning Storage Foundation should be
low. After all, optimizing a resource that is aggressively used by hundreds of different hosts
for thousands of different volumes, all accessing the same overloaded mechanically limited
disk hardware at the same time is almost impossible because many optimizations that
improve our application performance decrease everybody else's. Fortunately, VxVM and
VxFS are extensively self-tuning. It is not usually necessary to tweak individual volumes
or file systems to get very good performance out of them because they know some of the
features of the underlying level and use them as best they can, usually without degrading
aggregate performance. For instance, VxVM knows about your storage array's sweet spots
because it identifies the type of LUN using its extensive array support libraries (ASLs). VxFS
in turn knows about the layout of the VxVM volume and adapts its optimization parameters
(parallelity, I/O-size etc.) to the volume layout as much as possible.

However it is still possible to base one's volume layouts on wrong assumptions which
might lead to very poor performance. This is the part where we can help. We therefore limit
this chapter to two areas that would not be considered performance tuning in the classical
sense, but that certainly classify as tuning in the sense of adapting the product to best suit
your requirements as well as to prevent anything that would actually hurt performance. The
main points for the Easy Sailing part are:

V. Herminghaus and A. Sriba, Storage Management in Data Centers,

DOI: 10.1007/978-3-540-85023-6_13, © Springer-Verlag Berlin Heidelberg 2009

448

Tuning Storage Foundation

-	 Using reasonable volume parameters

-	 Setting these as defaults

As you can see, this is a rather short introduction into VxVM and VxFS tuning. Much
more about performance tuning in general, benchmarking, and the limits of optimization
can be found in this chapter's Technical Deep Dive section beginning on page 468.

449

Basics About Tuning Storage Foundation

Easy
Sailing

Vx

Tuning VxVM by Using Reasonable Parameters13.1.1	

Remember what we said in the chapter about SAN storage arrays? Storage arrays are
typically used by a massive amount of hosts at the same time. Very often hundreds and
sometimes thousands of machines access the same storage array. Most arrays have a very
large buffer cache, so they can buffer any writes coming in to the array. These writes will
be received at very high speed by the storage array, so the host is freed from these write
I/Os rather rapidly. One could say that any kind of write I/O is probably the best case for
accessing a storage array, since no disk seek time must be waited for by the requesting
machine. The limiting factor for write I/O are the latency of the array. This latency is in turn
defined by two parameters:

1)	 The basic latency of the unloaded array. This one given by the array hardware pro-
cessing capabilities

2)	 The amount of load on the array's front end controllers that insert the writes into
the write queue and onto the back-end controllers that distribute the writes to the
individual disks onto which the data is ultimately persisted.

We obviously cannot change the basic hardware features of the array (at least not by
software tuning ;), so we'll have to concentrate on the second point: the load on the array's
front end and back end controllers. How can we influence that parameter? The simple, and
rather obvious, point here is to reduce the absolute number of I/Os as much as possible.
If the array's controller only has to deal with 1,000 I/Os per second instead of 5,000 I/
Os per second, the algorithms internal to the array will have less objects to handle, will
have shorter queues to process, and subsequently will work more efficiently. This increased
efficiency results in shorter latency from the storage array and therefore can increase per-
formance for our host without hurting other participants.

450

Tuning Storage Foundation

How to Reduce the Number of I/Os?
The obvious point, and actually the point where the most performance could be gained,
is: modify the application to read and write more wisely. Unfortunately, most application
developers couldn't care less about storage; they are too far removed from the storage
hardware. The application developers usually rely on the database staff and it is the data-
base staff who the application developers will typically resort to when performance prob-
lems arise. But database people tend to be technically a little on the weak side, and from
our experience many of them will still fall for the same ancient myths that had already
been proved wrong ten years ago.

For instance, it used to be very hard to rid a typical Oracle DBA of the idea that using
a stripe size identical to Oracle's block size (usually 8 KB) is a brilliant idea. It is indeed
a terrible idea, as it creates a massive overload of extraneous I/O without improving any
other area of the storage hierarchy. But do not be surprised if your DBA dispels this as a
myth, citing some obscure Oracle document he received fifteen years ago.

So basically we are stuck with having to do the whole tuning ourselves: the application
developers only talk to the guys with the antiquated ideas about storage systems, so we
must make the best out of the situation.

How can we make the best out of the situation? We can, first of all, not stripe out
volumes unless we expect highly localized high-speed traffic to our volumes. This is not
normally the case. Striping will lead to extraneous I/O whenever a stripe column boundary
is crossed. This will cause additional overhead in the storage array controllers. The only
advantage we might get is increased load balancing across several physical disks. But this
may not be an advantage at all. The disks that we are transferring load to are only partially
used by our volume. the rest of their capacity is shared with other hosts using the same
storage array. They have allocated their LUNs on the same physical disks as we have. If we
stripe heavily, then we will split single large I/Os into more small I/Os, resulting in more
load on the storage array's controllers. But apart from this we might hit this one unlucky
disk that happens to be massively overloaded with scattered read requests (which can not
be ameliorated by caching). This would drag down out performance to abysmal levels, even
if the rest of the volume actually did gain something from striping (which it usually does
not).

Up to five years ago we would have recommended you choose physical disk spindles
inside the storage array for your application, create LUNs from them, and use them wisely.
It was at that time possible to actually tune storage arrays to your application. Because of
the extreme consequences of Moore's law in recent years it has become next to impossible
to successfully implement this nowadays. The best you can do now is to restrain yourself
to do only very limited striping (or preferably use concatenation instead) in order not to
generate additional I/Os on the storage array controllers..

On the other hand we should not overdo it. If you choose to do all your I/O on a single
LUN then the host resident request queue for this LUN (which looks to your host system
like a physical disk) may grow very large, which hampers performance on the host side. It
is not generally a clever idea to increase the maximum queue size on the host, by the way:
The algorithms used for queues work very well on short queue length, but processing time
may grow rapidly with increasing queue lengths. In this case it is better to distribute the
I/O onto several LUNs.

Not striping, but still distributing load across several LUNs to keeps queue lengths

451

Basics About Tuning Storage Foundation

short may seem like an oxymoron, but actually it isn't: If you have control over the creation
of the LUNs you can create several LUNs in such a way that they are on physically contigu-
ous space. If you concatenate these LUNs (each of which may be many GBs in size), then
you can have the best of both worlds: short queues on the host (at least for random I/O),
and no additional load on the front and back end controllers in the storage array.

Understanding and Modifying VxVM Defaults13.1.2	

Defaults for various VxVM commands are stored (in Solaris) in the /etc/defaults direc-
tory, under the same name as the VxVM utility that the defaults pertain to. For instance,
you could create a file /etc/defaults/vxdg to set the default type of Disk group (e.g. cds
or not cds), or a file /etc/default/vxassist to set the defaults for volume and log char-
acteristics.

Identifying vxassist Defaults
 You can check which defaults vxassist will use by issuing the command vxassist help
showattrs (show attributes) On a system with an empty defaults file you will get an output
that looks similar to this:

vxassist help showattrs
#Attributes:
layout=nomirror,nostripe,nomirror-stripe,nostripe-mirror,
 nostripe-mirror-col,nostripe-mirror-sd,noconcat-mirror,nomirror-concat,
 span,nocontig,raid5log,noregionlog,diskalign,nostorage
 mirrors=2 columns=0 regionlogs=1 raid5logs=1 dcmlogs=0 dcologs 0
 autogrow=no destroy=no sync=no
 min_columns=2 max_columns=8
 regionloglen=0 regionlogmaplen=0 raid5loglen=0 dcmloglen=0 logtype=region
 stripe_stripeunitsize=128 raid5_stripeunitsize=32
 stripe-mirror-col-trigger-pt=2097152 stripe-mirror-col-split-trigger-pt=2097152
 usetype=fsgen diskgroup= comment=““ fstype=
 sal_user=
 user=0 group=0 mode=0600
 probe_granularity=2048
mirrorgroups (in the end)
 alloc=
 wantalloc=vendor:confine
 mirror=
 wantmirror=
 mirrorconfine=
 wantmirrorconfine=protection
 stripe=
 wantstripe=
 tmpalloc=

452

Tuning Storage Foundation

What you see in the layout line is that vxassist will use no mirroring (nomirror), no
striping (nostripe), and no combination of any mirroring or striping, and that it will allow
the spanning of disks (span), will align subdisks to cylinder boundaries (diskalign), etc.

The next line shows that if you specify a mirrored layout on the command line (i.e. if you
create a mirrored volume) then this volume will have by default 2 mirrors (mirrors=2).

Two lines further down you see

min_columns=2 max_columns=8

This refers to the boundaries of the stripe column default. Let's say you specify a
striped layout (although you should think twice about doing it - remember what we said
about reducing scattered reads!) but you do not specify a number of columns. In that case
VxVM picks the default as follows:

It divides the number of disks in the Disk group by two to allow for later mirroring the
volume. Then, from the result it picks the highest number of columns possible that is within
the limits given by min_columns and max_columns. If we were using a Disk group with six
disks and we gave the following command:

vxassist make avol 1g layout=stripe

(i.e. no mirroring), it would create a three-column stripe. If our Disk group had fourteen
disks, then using the same command it would create a seven-column stripe. And if there
were many more disks in the Disk group, like thirty or forty, it would still never exceed
eight, because that is the value of max_columns.

Changing vxassist Defaults
We can put our own default into a file and make vxassist use those defaults. The simplest
way is to edit (or create) the file /etc/default/vxassist, which vxassist will use auto-
matically unless you specify otherwise. If you like different sets of defaults for different
tasks you could create several files and pass them to vxassist using the -d $DEFAULTSFILE
parameter. In that case, vxassist will ignore /etc/defaults/vxassist and just read the
default file that you passed it.

Format of the vxassist Defaults File
The defaults file for vxassist looks like a collection of command line parameters to vxassist.
In principle, you could create a space-separated or newline-separated list of your favorite
options. But the reality is more tricky, and there are important differences, which concern
mirroring and striping: even if you set nmirror=3 and ncol=5 in the defaults file, these
values will not be activated just because they are in the defaults file.

Only if the vxassist command actually receives the parameter appropriate for mirror-
ing will the new default for nmirror be used. I.e. in the case given above, the volume will be
a three-way mirror. And only if the parameter relevant for striping is used on the command
line will the number of columns from the defaults file be applied.

So setting the nmirror attribute does not lead to mirroring, and setting the ncol attri-
bute does not lead to striping. But there actually are ways to turn mirroring on by default.

453

Basics About Tuning Storage Foundation

One is to add "mirror=yes" to the defaults file. This will lead to all volumes, regardless of
what is specified on the command line, being mirrored the default number of times (depen-
dent on the rest of the file or the default that was compiled into vxassist).

While mirror=yes turns the default on for mirroring, there is no such parameter for
striping. You cannot specify stripe=yes to coerce striping by default. You can, however,
specify a default layout, using the "layout=..." parameter just like you used to one the
command line. So with a defaults file like this:

cat /etc/default/vxassist
columns=2
nmirror=3

You will get a concat volume unless you specify mirroring. If you do specify mirroring
(layout=mirror) on the command line you will get a three-way mirror (because you changed
the default value for the number of mirrors). But the volume will not be striped unless
you also specify striping on the command line (layout=stripe, layout=stripe-mirror
or similar). If you do specify striping, then the number of columns will default to two as
given in the defaults file. If you add mirror=yes to the default file the volume will be mir-
rored. If you add layout=mirror instead, the volume will be mirrored, too. But if you add
layout=stripe-mirror, it will be striped, but not mirrored. In that case you need an addi-
tional line adding mirror=yes to actually create striped and mirrored volumes be default.
If this seems non-linear and counter-intuitive to you, then rest assured that you are not the
only one who thinks so. But we cannot change the software, just explain it.

After you wrote your defaults file for vxassist, the output of the vxassist showattrs
command will vary to reflect what you put into the defaults file. For instance, with a
defaults file like this:

cat /etc/default/vxassist
layout=stripe-mirror
mirror=yes
columns=2
nmirror=3

the output of vxassist help showattrs will change to resemble the new defaults:

vxassist help showattrs
#Attributes:
 layout=mirror,nostripe,nomirror-stripe,stripe-mirror,
 nostripe-mirror-col,nostripe-mirror-sd, noconcat-mirror,nomirror-concat,
 span,nocontig,raid5log,noregionlog,diskalign,nostorage
 mirrors=3 columns=2 regionlogs=1 raid5logs=1 dcmlogs=0 dcologs 0
 autogrow=no destroy=no sync=no
 min_columns=2 max_columns=8
 regionloglen=0 regionlogmaplen=0 raid5loglen=0 dcmloglen=0 logtype=region
 stripe_stripeunitsize=128 raid5_stripeunitsize=32
 stripe-mirror-col-trigger-pt=2097152 stripe-mirror-col-split-trigger-pt=2097152
 usetype=fsgen diskgroup= comment=““ fstype=

454

Tuning Storage Foundation

 sal_user=
 user=0 group=0 mode=0600
 probe_granularity=2048
mirrorgroups (in the end)
 alloc=
 wantalloc=vendor:confine
 mirror=
 wantmirror=
 mirrorconfine=
 wantmirrorconfine=protection
 stripe=
 wantstripe=
 tmpalloc=

Tuning VxFS13.1.3	

Tuning Extent Allocation
Tuning a VxFS file system can be done on two levels: One is making sure the extents that
are allocated for the files are as contiguous as possible, i.e. files do not consist of hundreds
of little, non-sequential snippets, but rather of a single, large block. The VxFS file system
is very good at allocating contiguously when a file is written, as has been discussed in the
appropriate section on page 436 of the file system chapter. But during the lifetime of a
file system extents are constantly being rewritten, new extents allocated, old extents freed
and so on. The result is that files end up consisting of little snippets after all. This happens
to both UFS and VxFS file systems. It is worse if the file system is nearly full, because then
the system is less free to find appropriate extents (or blocks) for the files and must resort
to allocating e.g. several small extents far away from the existing file rather than a single
large extent close by.

The standard UFS offers no way of handling this slow but certain deterioration of file
system contiguousness (and therefore deterioration of performance) except copying the
files away, creating a new file system, and copying the files back. This is usually unac-
ceptable due to the downtime involved. The VxFS does have utilities that do extent (and
directory) reallocation on the fly, on a active file system. In fact it is highly recommended
to perform a reallocation run at regular intervals, like daily, weekly, or at least monthly. The
total cost in I/O load is not very high, but application performance will not degrade, as it
would otherwise. In one real example from 2006 a file system for Oracle table spaces had
an average(!) number of several hundred extents allocated per file. That was reduced to
an average of one(!) extent per file during three successive runs of optimization, each of
which took only a few minutes. File system performance for sequential I/O was increased
by a factor of ten. This is an extreme case, but because so few people know the tools for
VxFS optimization we suspect that there several Petabyte of storage out there which have
become extremely scattered and would indeed profit a lot from a regular optimization.
Refer to the file system chapter for more information about the fsadm command and how

455

Basics About Tuning Storage Foundation

it can be used to optimize your file systems.

Tuning File System Parameters
VxFS defaults are dynamically created when the file system is started by reading (if appli-
cable) the layout of the underlying volume and adapting several internal values to it (e.g.
the maximum I/O size). But these values can be influenced by creating an entry in the file
/etc/vxfstunetab. In this file, each line defines the VxFS tunables for one volume. You can
read the initial value with vxtunefs $RAWDEVICE, then change their format to match the
vxfstunetab file format (which unfortunately does not match at all), and then changing
the values of the individual tunables for that file system. The next time the file system is
mounted, these values will be applied.

Let's look at the tuning parameters for a newly created VxFS file system:

vxassist -g adg make avol 1g
mkfs -F vxfs /dev/vx/rdsk/adg/avol
 version 7 layout
 2097152 sectors, 1048576 blocks of size 1024, log size 16384 blocks
 largefiles supported
mount -Fvxfs /dev/vx/dsk/adg/avol /mnt
vxtunefs /mnt
Filesystem i/o parameters for /mnt
read_pref_io = 65536
read_nstream = 1
read_unit_io = 65536
write_pref_io = 65536
write_nstream = 1
write_unit_io = 65536
pref_strength = 10
buf_breakup_size = 1048576
discovered_direct_iosz = 262144
max_direct_iosz = 1048576
default_indir_size = 8192
qio_cache_enable = 0
write_throttle = 0
max_diskq = 1048576
initial_extent_size = 8
max_seqio_extent_size = 2048
max_buf_data_size = 8192
hsm_write_prealloc = 0
read_ahead = 1
inode_aging_size = 0
inode_aging_count = 0
fcl_maxalloc = 32537600
fcl_keeptime = 0
fcl_winterval = 3600

456

Tuning Storage Foundation

fcl_ointerval = 0
oltp_load = 0

The parameters reported by vxtunefs are actually derived from the volume layout. The
VxFS specific mount command probes the underlying volume parameters and uses them
to set the tunable parameters to something reasonable. Therefore it is seldom necessary
to tune a VxFS file system for optimum performance with the underlying VxVM volume. At
least this used to be the case if you were using physical disks rather than LUNs. You may
find that some tuning may still be in order to adapt for application-specific I/O behavior
or other special cases, even if the VxFS file system resides in a VxVM volume. If it does
not reside in a VxVM volume but in a plain partition or a volume created by some other
volume management product, then tuning is definitely a reasonable option. This is also true
if you are using LUNs as the basis for your VxVM (or other) volumes, because the physical
properties of LUNs allow much greater I/O sizes as well as greater parallelity than plain
disks do.. Let's look at some volume layouts, their respective tunefs-parameters and how
they change dependent on the volume layout.

First, we create four volumes: a concat volume, a stripe with 5 columns and a
stripesize of 2048 blocks (or 1024k or 1 MB), a three-way mirror, and a stripe-mirror with
three columns and two mirrors. We make VxFS file systems on them and mount them right
away into directories with names corresponding to the volume layouts:

mkdir /concat /stripe5col /mirror3way /stripemirror
vxassist make concatvol 1g layout=concat
mkfs -F vxfs /dev/vx/rdsk/adg/concatvol
 version 7 layout
 2097152 sectors, 1048576 blocks of size 1024, log size 16384 blocks
 largefiles supported
mount -F vxfs /dev/vx/dsk/adg/concatvol /concat
vxassist make stripe5colvol 1g layout=stripe ncol=5 stwid=1024k
mkfs -F vxfs /dev/vx/rdsk/adg/stripe5colvol
 version 7 layout
 2097152 sectors, 1048576 blocks of size 1024, log size 16384 blocks
 largefiles supported
mount -F vxfs /dev/vx/dsk/adg/stripe5colvol
vxassist make mirror3wayvol 1g layout=mirror nmirror=3 init=active
mkfs -F vxfs /dev/vx/rdsk/adg/mirror3wayvol
 version 7 layout
 2097152 sectors, 1048576 blocks of size 1024, log size 16384 blocks
 largefiles supported
mount -F vxfs /dev/vx/dsk/adg/mirror3wayvol /mirror3way
vxassist make stripemirrorvol 1g layout=stripe-mirror init=active
mkfs -F vxfs /dev/vx/rdsk/adg/stripemirrorvol
 version 7 layout
 2097152 sectors, 1048576 blocks of size 1024, log size 16384 blocks
 largefiles supported
mount -F vxfs /dev/vx/dsk/adg/stripemirrorvol /stripemirror

457

Basics About Tuning Storage Foundation

Next, we dump the vxtunefs output for each file system into a file in /var/tmp, and
then diff it with respect to the plain concat volume. Finally, we run the result over cat -n
in order to get line numbers for convenient referencing:

for MOUNTPOINT in /concat /stripe5col /mirror3way /stripemirror; do
 vxtunefs $MOUNTPOINT >/var/tmp/$MOUNTPOINT.tuna
done

First, let's look at the differences between the concat volume and the five column
stripe we just created:

diff /var/tmp/concat.tuna /var/tmp/stripe5col.tuna | cat -n
 1 1,8c1,8
 2 < Filesystem i/o parameters for /concat
 3 < read_pref_io = 65536
 4 < read_nstream = 1
 5 < read_unit_io = 65536
 6 < write_pref_io = 65536
 7 < write_nstream = 1
 8 < write_unit_io = 65536
 9 < pref_strength = 10
 10 ---
 11 > Filesystem i/o parameters for /stripe5col
 12 > read_pref_io = 1048576
 13 > read_nstream = 5
 14 > read_unit_io = 1048576
 15 > write_pref_io = 1048576
 16 > write_nstream = 5
 17 > write_unit_io = 1048576
 18 > pref_strength = 20
 19 15c15
 20 < max_diskq = 1048576
 21 ---
 22 > max_diskq = 83886080

What we see is that several parameters have changed. In particular, the preferred
read-I/O and write-I/O size (lines 3, 6, 12, and 15) have adapted to reflect the stripe unit
size of the striped volume. In addition, the number of read and write I/O streams (lines 4,
7, 13, and 16) has increased from one (which it is for the concat volume) to five (for the
five column stripe). This reflects the fact that VxFS sees many more disks in the underly-
ing storage and assumes it can put an I/O on each of the disks in parallel. Remember this
assumption for the later part of the chapter. It will be the basis for some optimization for
SAN storage.

Apart from the I/O parallelity parameters, the size of the disk queue generated per file
has increased enormously (from 1MB to 80 MB). This result is arrived at by granting six-
teen I/Os of the preferred I/O size (read_pref_io or write_pref_io) to every write stream
(write_nstream). The concat volume has a preferred I/O size of 65536 (64KB) and only one

458

Tuning Storage Foundation

write stream. sixteen times 64K is 1MB, so this is the maximum disk queue value for VxFS
(the maximum number of bytes per file that reside in pages which are eligible for flushing
to disk).

The five-way stripe, due to its large stripe unit size of 1 MB, gets the better end of it:
five write streams (due to the five columns) multiplied by 1 MB multiplied by 16 yields the
comparatively whopping 80 MB of queue size. Only after this size is exceeded does VxFS
throttle write I/O to this file system; much later than in the case of the concat volume.

Now, let's check the differences between the concat volume and the three-way mir-
rored volume:

diff /var/tmp/concat.tuna /var/tmp/mirror3way.tuna | cat -n
 1 1c1
 2 < Filesystem i/o parameters for /concat
 3 ---
 4 > Filesystem i/o parameters for /mirror3way
 5 3c3
 6 < read_nstream = 1
 7 ---
 8 > read_nstream = 3

As you see, not much has changed compared to the concat volume. Only the number of
read streams has increased (lines 6 and 8) to reflect the number of plexes that can be read
(three), so maximum read parallelization has increased. The stripe was better than that in
this respect. It used five parallel read streams. So let's see what we get when we compare
the concat volume with the stripe-mirror:

diff /var/tmp/concat.tuna /var/tmp/stripemirror.tuna | cat -n
 1 1c1
 2 < Filesystem i/o parameters for /concat
 3 ---
 4 > Filesystem i/o parameters for /stripemirror
 5 3c3
 6 < read_nstream = 1
 7 ---
 8 > read_nstream = 3
 9 6c6
 10 < write_nstream = 1
 11 ---
 12 > write_nstream = 3
 13 8c8
 14 < pref_strength = 10
 15 ---
 16 > pref_strength = 20
 17 15c15
 18 < max_diskq = 1048576
 19 ---
 20 > max_diskq = 3145728

459

Basics About Tuning Storage Foundation

Again, the number of read streams has increased (lines 8 and 12) because this volume
has three plexes instead of one. But because we stuck to the default stripe unit size of 64
KB (we did not specify "stwid=..." this time) the maximum disk queue has not increased
dramatically; it is merely three times the value of the concat, which comes from the fact
that there are now three columns that can be written to independently.

VxFS Tunable Parameters and How to Set Them
So, looking at the automatically generated VxFS tunables you might get the impression
that striping a volume is not too bad after all. On the other hand, this book has been
telling you over and over that striping in current data center setups at least tends to be
counterproductive for performance. Who is right? Well, VxFS would be right and striping
would be good if we are using physical disks. But if we are using SAN storage then VxFS is
not right because then the parameters that the VxFS-specific mount command calculates
are based on virtual objects (LUNs) rather than physical objects (disks). Virtual objects do
not have the same limits as physical objects have (they were, after all, created specifically
to overcome the limitations of their physical counterparts).

Using vxtunefs to Optimize Your SAN Storage
So the way to get the best of both world, to combine the enhanced features of virtual
disks aka LUNs with the best volume layout (concat) without limiting the file system to
ridiculously low values of disk queuing of parallelity is to tune your file systems to your
SAN storage instead of some assumed physical disks.

You can do so by creating a file named /etc/vx/tunefstab that contains the tunable
parameters for every file system of your host system. This file contains all the deviations
from the default that you wish to impose on your file systems. If, like most data centers
today, you are using basically one kind of storage array, and especially of you are using only
one kind of LUN, then you can tweak the tunefstab file pretty easily: create a volume that
resembles, on the VxVM level, the specifications of your LUNs.

E.g. if your LUNs are 6-way striped with a 512 KB stripe unit size, and you are mirroring
all volumes (two plexes per volume) using VxVM, then you could create a sample volume
that exposes all the underlying physical features to VxFS: just create a volume with two
plexes, each of which is a 6-way stripe with 512 KB stripe unit size. Then, put a VxFS on it,
mount it and run vxtunefs on the mount point.

The vxtunefs command will diligently create the necessary defaults to make the
best out of a two-way mirror with underlying 6-column stripes with 512 KB stripe unit
size, and output them to your terminal. Your job now is to catch that output, put it
into /etc/vx/tunefstab for each volume that uses this particular SAN storage type and
re-mount the volumes so the new values take effect. You will have to tweak the output
format quite a bit to make a valid /etc/vx/tunefstab entry out of the vxtunefs output,
but we will show you how to do it shortly.

460

Tuning Storage Foundation

Organization of the /etc/vx/tunefstab File
The file /etc/vx/tunefstab contains tuning information for all file systems, so in cluster
systems it is a very good idea to replicate the file across all nodes in order to make sure that
the relevant tuning parameters are accessible wherever a service group my go online.

The file is organized line by line, with each line containing either nothing, a comment,
or the description of a single file system.

The following is a sample tunefstab for three of the four volumes we used. It also sets
the system-wide default parameters for all vxfs file systems that have no specific entry
in the tunefstab:
cat /etc/vx/tunefstab
Set some reasonable read/write defaults that match our SAN box
These take precedence over the values derived from the volume
layout which are found by mount_vxfs. Note that this does not
seem to work any more as of Storage Foundation 5.0.
system_default	 read_pref_io=1048576,write_pref_io=1048576,read_nstream=8

Now fine-tune individual file systems
This takes precedence over the values defined in system_default
/dev/vx/dsk/adg/stripemirror	 max_diskq=83886080,write_nstream=8
/dev/vx/dsk/adg/stripe5col	 max_diskq=3145728,write_pref_io=2097152

The following entries will all be used, even if they are on
different lines
/dev/vx/dsk/adg/concatvol	 max_diskq=3145728,write_nstream=16
/dev/vx/dsk/adg/concatvol	 read_nstream=16

The manual page for the /etc/vx/tunefstab file mentions an entry called
system_default, which supposedly sets the values for all vxfs file systems. We have used
this entry in the example above. But it seems like this entry does not work any more in
Storage Foundation 5.0, as all tests performed on our hardware failed to produce any
results using this setting.

461

Tools for Performance Tuning VxVM on SAN Storage

The Full Battleship

Tools for Performance Tuning VxVM on 13.2	
SAN Storage

VxWork
A swiss company called in&work AG has created a tool to ease administration and to
improve performance on SAN storage by balancing the load as much as possible across
all controllers in both the host and the storage array. It also recognizes and optimizes the
paths to physical disks inside the array. Unless there are too many hosts attached to a
single storage array this appears to be a very reasonably approach to optimization, because
in many cases volumes under perform dramatically simply because of unfavorable map-
ping from volume blocks to hardware disk blocks. This problem can be fully remedied by
using VxWork. In cases where there are too many hosts attached to a storage array it is
not sure that there is a noticeable advantage, but it may be worth a try. Their web address
is http://www.inwork.ch. Note that this is an independent third-party product and is not
in any way related to Symantec.

Tracing and Benchmarking VxVM Volumes
In addition to the commercial tool mentioned above there are several tools delivered with
Storage Foundation that can help you find bottlenecks and possibly remove them. These
tools come with the support package (VRTSspt). Two of them – vxdmpadm and vxtrace
– are installed in /usr/sbin, but the benchmark program – vxbench – is installed in
/opt/VRTSspt/FS/VxBench/vxbench_$RELEASE, where $RELEASE corresponds to the release
number of the Solaris operating system, e.g. /opt/VRTSspt/FS/VxBench/vxbench_10. So
how do these tools work, and what are the relevant command usages for performance
tuning?

vxdmpadm
The vxdmpadm command controls the dynamic multipathing layer of VxVM. It is often
used for inquiring path status, and in preparation of scheduled maintenance on paths. For
instance, if there was a firmware upgrade due on the storage array then this is done on

462

Tuning Storage Foundation

one storage array controller after the other, in order to keep the service online. In such a
case you would first disable the corresponding path for the first controller, upgrade the
controller, re-enable the path, then disable the second path and so on.

It is less widely known that vxdmpadm can also be used to find bottlenecks, especially in
the form of overloaded controllers or LUNs. If you use the right parameters vxdmpadm will
display the amount of usage per DMP path. Note that if you are using mpxio or another
multipathing product that hides the individual paths from DMP's view, the sub-paths of
that multipathing product cannot be shown; you will need to resort to the utilities that the
vendor of that multipathing software delivers.

If you are using DMP then you can control gathering performance statistics and sub-
sequently read out the statistics and display them by using simple vxdmpadm commands.
The procedure – in short – is this:
vxdmpadm iostat start # Automatically done at boot time
# vxdmpadm iostat show all	 # Display all statistics
# vxdmpadm iostat reset	 # Set counters to zero
# vxdmpadm iostat show all interval=5 count=10	 # more options
# vxdmpadm iostat stop	 # Stop gathering statistics

It is good to know that gathering performance statistics is not CPU-intensive. You can
leave it on without worrying about the overhead.

Here is a sample output of the command that shows the statistics:

vxdmpadm iostat show all
 cpu usage = 52748us per cpu memory = 32768b
 OPERATIONS KBYTES AVG TIME(ms)
PATHNAME READS WRITES READS WRITES READS WRITES
c1t1d1s2 2614 255 291 31 81.501718 42.064516
c2t17d1s2 2172 4983 271 587 82.704797 25.589438
c1t1d6s2 7109 2736 711 272 71.101266 18.393382
c2t17d6s2 5370 7162 663 810 70.126697 23.766667
c1t1d2s2 8452 2977 2257 235 19.428002 16.476596
c2t17d2s2 3824 5218 391 2443 62.506394 4.887843
c1t1d3s2 7767 7502 806 824 61.972705 21.253641
c2t17d3s2 6344 2308 765 249 58.785621 18.859438
c1t1d4s2 7116 7178 802 818 62.201995 21.117359
c2t17d4s2 6122 2028 765 253 59.546405 18.169960
c1t1d7s2 3990 4272 2149 3086 17.217310 3.563837
c1t1d9s2 2662 229 296 28 55.266892 43.071429

vxtrace
A nice utility was developed for VxVM to follow I/Os from the Volume to the LUN and see
what actually gets sent to the storage array. This tool is called vxtrace and will become
your good friend especially when trying to find out exactly what kind of I/O pattern your
application creates. This is often the entry point for optimization efforts. It goes without

463

Tools for Performance Tuning VxVM on SAN Storage

saying that in order to optimize, you first need to know what to optimize for. Does the
application create mostly read or mostly write I/O? Are the I/Os large or small, consecutive
or random? Do they address the whole volume or are they mostly limited to hot spots? You
can find all that out using vxtrace on a mounted file system.

The following are a few walkthroughs of vxtrace on a volume while using vxbench (see
below) to put database-like I/O onto a file in the file system residing on that volume.

vxtrace -o dev,disk -g adg mirrorvol
1091 START read vdev mirrorvol block 3904352 len 16 concurrency 1 pid 24980
1092 START read disk c1t1d7s2 op 1091 block 3970144 len 16
1092 END read disk c1t1d7s2 op 1091 block 3970144 len 16 time 0
1091 END read vdev mirrorvol op 1091 block 3904352 len 16 time 1
1093 START read vdev mirrorvol block 34640160 len 16 concurrency 1 pid 24980
1094 START read disk c1t1d7s2 op 1093 block 34705952 len 16
1094 END read disk c1t1d7s2 op 1093 block 34705952 len 16 time 0
1093 END read vdev mirrorvol op 1093 block 34640160 len 16 time 0
1095 START read vdev mirrorvol block 23138688 len 16 concurrency 1 pid 24980
1096 START read disk c1t1d7s2 op 1095 block 23204480 len 16
1096 END read disk c1t1d7s2 op 1095 block 23204480 len 16 time 0
1095 END read vdev mirrorvol op 1095 block 23138688 len 16 time 1
1097 START read vdev mirrorvol block 61058832 len 16 concurrency 1 pid 24980
1098 START read disk c1t1d7s2 op 1097 block 61124624 len 16
1098 END read disk c1t1d7s2 op 1097 block 61124624 len 16 time 0
1097 END read vdev mirrorvol op 1097 block 61058832 len 16 time 0
1099 START read vdev mirrorvol block 11335712 len 16 concurrency 1 pid 24980
1100 START read disk c1t1d2s2 op 1099 block 44955936 len 16
1100 END read disk c1t1d2s2 op 1099 block 44955936 len 16 time 1
1099 END read vdev mirrorvol op 1099 block 11335712 len 16 time 1
1101 START read vdev mirrorvol block 71050496 len 16 concurrency 1 pid 24980
1102 START read disk c1t1d8s2 op 1101 block 25451776 len 16
1102 END read disk c1t1d8s2 op 1101 block 25451776 len 16 time 1
1101 END read vdev mirrorvol op 1101 block 71050496 len 16 time 1

And so on; you get the point: Every I/O is tagged (in the left most column) by an iden-
tifier that makes it easy to correlate the I/O START to the I/O END. Each I/O to or from a
"vdev" (virtual device) is converted to an I/O to or from a "disk" (physical device, or what
the computer thinks is a physical device). The length field always says "len 16", which
means all I/Os in the (admittedly tiny) time frame we observed were 8KB in size (16 blocks).
As you can see from the block numbers they are not sequential at all. In that particular
case, nothing can be gained from tuning the I/O size to some large value (all I/Os are small
anyway) or from making the files more contiguous (the I/Os access the file in a random
fashion anyway, so that would not help).

Here is another example from a mirror-stripe that shows how striping can have a mas-
sively negative effect on volume I/O behavior if it is not used wisely:
vxtrace -o dev,disk -g adg mirror-stripevol
1147 START read vdev mirror-stripevol block 43008 len 2048 concurrency 1 pid
25646

464

Tuning Storage Foundation

1148 START read disk c1t1d4s2 op 1147 block 89552896 len 64
1149 START read disk c1t1d5s2 op 1147 block 89552896 len 64
1150 START read disk c1t1d6s2 op 1147 block 89552896 len 64
1151 START read disk c1t1d2s2 op 1147 block 79293376 len 64
1152 START read disk c1t1d3s2 op 1147 block 89552960 len 64
1153 START read disk c1t1d4s2 op 1147 block 89552960 len 64
1154 START read disk c1t1d5s2 op 1147 block 89552960 len 64
1155 START read disk c1t1d6s2 op 1147 block 89552960 len 64
1156 START read disk c1t1d2s2 op 1147 block 79293440 len 64
1157 START read disk c1t1d3s2 op 1147 block 89553024 len 64
1158 START read disk c1t1d4s2 op 1147 block 89553024 len 64
1159 START read disk c1t1d5s2 op 1147 block 89553024 len 64
1160 START read disk c1t1d6s2 op 1147 block 89553024 len 64
1148 END read disk c1t1d4s2 op 1147 block 89552896 len 64 time 0
1161 START read disk c1t1d2s2 op 1147 block 79293504 len 64
1149 END read disk c1t1d5s2 op 1147 block 89552896 len 64 time 0
1162 START read disk c1t1d3s2 op 1147 block 89553088 len 64
1163 START read disk c1t1d4s2 op 1147 block 89553088 len 64
1164 START read disk c1t1d5s2 op 1147 block 89553088 len 64
1165 START read disk c1t1d6s2 op 1147 block 89553088 len 64
1166 START read disk c1t1d2s2 op 1147 block 79293568 len 64
1167 START read disk c1t1d3s2 op 1147 block 89553152 len 64
1150 END read disk c1t1d6s2 op 1147 block 89552896 len 64 time 0
1168 START read disk c1t1d4s2 op 1147 block 89553152 len 64
1169 START read disk c1t1d5s2 op 1147 block 89553152 len 64
1151 END read disk c1t1d2s2 op 1147 block 79293376 len 64 time 0
1170 START read disk c1t1d6s2 op 1147 block 89553152 len 64
1171 START read disk c1t1d2s2 op 1147 block 79293632 len 64
1172 START read disk c1t1d3s2 op 1147 block 89553216 len 64
1173 START read disk c1t1d4s2 op 1147 block 89553216 len 64
1174 START read disk c1t1d5s2 op 1147 block 89553216 len 64
1175 START read disk c1t1d6s2 op 1147 block 89553216 len 64
1152 END read disk c1t1d3s2 op 1147 block 89552960 len 64 time 0
1176 START read disk c1t1d2s2 op 1147 block 79293696 len 64
1177 START read disk c1t1d3s2 op 1147 block 89553280 len 64
1178 START read disk c1t1d4s2 op 1147 block 89553280 len 64
1179 START read disk c1t1d5s2 op 1147 block 89553280 len 64
1157 END read disk c1t1d3s2 op 1147 block 89553024 len 64 time 0
1156 END read disk c1t1d2s2 op 1147 block 79293440 len 64 time 0
1159 END read disk c1t1d5s2 op 1147 block 89553024 len 64 time 0
1158 END read disk c1t1d4s2 op 1147 block 89553024 len 64 time 0
1154 END read disk c1t1d5s2 op 1147 block 89552960 len 64 time 0
1153 END read disk c1t1d4s2 op 1147 block 89552960 len 64 time 0
1160 END read disk c1t1d6s2 op 1147 block 89553024 len 64 time 0
1155 END read disk c1t1d6s2 op 1147 block 89552960 len 64 time 0
1166 END read disk c1t1d2s2 op 1147 block 79293568 len 64 time 0
1167 END read disk c1t1d3s2 op 1147 block 89553152 len 64 time 0

465

Tools for Performance Tuning VxVM on SAN Storage

1168 END read disk c1t1d4s2 op 1147 block 89553152 len 64 time 0
1170 END read disk c1t1d6s2 op 1147 block 89553152 len 64 time 0
1162 END read disk c1t1d3s2 op 1147 block 89553088 len 64 time 0
1161 END read disk c1t1d2s2 op 1147 block 79293504 len 64 time 0
1169 END read disk c1t1d5s2 op 1147 block 89553152 len 64 time 0
1174 END read disk c1t1d5s2 op 1147 block 89553216 len 64 time 0
1163 END read disk c1t1d4s2 op 1147 block 89553088 len 64 time 0
1175 END read disk c1t1d6s2 op 1147 block 89553216 len 64 time 0
1176 END read disk c1t1d2s2 op 1147 block 79293696 len 64 time 0
1177 END read disk c1t1d3s2 op 1147 block 89553280 len 64 time 0
1178 END read disk c1t1d4s2 op 1147 block 89553280 len 64 time 0
1179 END read disk c1t1d5s2 op 1147 block 89553280 len 64 time 0
1165 END read disk c1t1d6s2 op 1147 block 89553088 len 64 time 1
1172 END read disk c1t1d3s2 op 1147 block 89553216 len 64 time 6
1164 END read disk c1t1d5s2 op 1147 block 89553088 len 64 time 6
1171 END read disk c1t1d2s2 op 1147 block 79293632 len 64 time 7
1173 END read disk c1t1d4s2 op 1147 block 89553216 len 64 time 7
1147 END read vdev mirror-stripevol op 1147 block 43008 len 2048 time 7

The first and the last line of output are the START and END lines for the volume I/O
number 1147, which is 1MB (2048 blocks). As you can see this single I/O is split up into
lots of 32K (64 blocks) I/Os because the underlying volume is striped with a stripe unit size
which is much smaller than the application's I/O size. It is obvious that this has a negative
effect on the overall performance of the storage array. The storage array has to handle
many more individual I/Os, cannot efficiently use its read-ahead cache etc. There might be
an advantage if the storage array was dedicated to our host, because we are reading from
several spindles in parallel. But first of all, storage arrays nowadays are usually shared by
a massive number of hosts. And second, it is not at all certain that there actually would
be any noticeable performance increase due to striping due to the increased read latency
and the high speed of sequential access. Keep all the relevant parameters in mind when
optimizing your storage!

That said, a realistic cycle of performance tuning a live application volume in a data
center is the following:

1.	 Make sure any reasonable optimization can be done at all. This is usually not the case
if several hundred servers are attached to the same storage array, as any optimization
that works to the benefit of your server will work against the other servers.

2.	 Thoroughly optimize the file system first using (possibly several runs of)
fsadm -de $MOUNTPOINT. Doing the following steps on a file system that is not opti-
mized leads to bogus results, as I/Os that would normally be large and sequential will
get split into smaller random I/Os.

3.	 Run vxprint to find the current volume layout

4.	 Run a cycle of vxdmpadm iostat reset / vxdmpadm iostat show all to find any
obviously overloaded controllers or LUNs

5.	 Run the command vxtrace -o dev,disk -g $DG $VOLNAME on the volume or
vxtrace -o dev,disk -g $DG $DISKNAME on an overloaded target several times dur-
ing various operating cycles of the application, like during normal operation, backup,

466

Tuning Storage Foundation

database export, etc.

6.	 Identify the I/O pattern of the application.

7.	 Relayout the volume to match the I/O pattern of the application and ideally the I/O
requirements of the storage array. For this, you need to know the internal organiza-
tion of your storage array's LUNs. For example, a LUN may consist of a slice out of a
RAID-5 group. The RAID-5 group may consist of eight disks and use a stripe size of
64 KB or 512 KB.

If performance is still lacking, there is probably not much you can do, at least from a
Volume Manager perspective. Most likely your SAN or storage array is overloaded (this is
all too common nowadays) or the data access code in the application is not optimal (also
very common).

So we are not expecting you to experience any multi-digit performance gains by
optimizing VxVM volumes and VxFS file systems. It happens, but is not very common. You
still need to do it, though, because in many cases the persons responsible for the SAN
infrastructure, the SAN and volume storage, the database, and the application that uses the
database will quarrel about whose fault the perceived performance problem is. If you have
optimized your volumes and file systems (and maybe gained 5 percent), not only can you
seriously claim that from your side the optimum is reached, but you might even claim that
you have been keeping the volumes in good shape all the time: only little could be gained.
Now the issue lies with the other departments and you are outside of the firing line.

vxbench
If you have analyzed the application's I/O pattern then you can simulate this I/O pat-
tern in a reliable, repeatable way using vxbench. This little program resides – as men-
tioned above – inside /opt/VRTSspt/FS/VxBench and there are several versions of it:
one for each version of the Solaris OS. The one for Solaris 10, for instance, has the path
/opt/VRTSspt/FS/VxBench/vxbench_10. It takes a number of parameters, most notably
a workload parameter -w, which determines the type of I/O: read or write, sequential or
random, memory-mapped or normal, asynchronous or synchronous etc. The parameter
-i specifies the sub-options to the workload, like the size of each I/O, how many threads
to use, how many I/Os to make etc. There is a great lot of options and it is probably best
if you call vxbench -h yourself to get some help. We will tell you just what you need to
know in addition to what you can see from the help text because there are some things in
vxbench which are not obvious.

1.	 The most important thing is that vxbench does not create files. Files must exist or
the program fails. But if you use existing files be careful not to specify any workload
that does write I/O or you will lose data! If you want to check just the volume speed
you can specify the raw device to skip the file system code path, but again, be careful
if you specify writing workloads, as this may corrupt an existing file system on that
device.

2.	 If your files are small then vxbench will likely read beyond the end of the file and
terminate with an error. It sounds like a stupid oversight, but that is the way it has
been for years , so there is probably a good (if not particularly obvious) reason to it.
You can (and sometimes must) limit the maximum offset in a file that is accessed
by vxbench to something significantly smaller than the file size. In particular, if you

467

Tools for Performance Tuning VxVM on SAN Storage

are doing hundreds of one MB I/Os in a sequential workload, then it is better to stay
hundreds of MBs away from the end of the file.

3.	 To simulate database I/O, you need to specify a synchronous open-type. That causes
vxbench to open the file in synchronous mode, like databases usually do. The flag is
vxbench -o dsync or vxbench -o sync. You can somewhat emulate the I/O behavior
of Veritas Storage Foundation Database Edition for Oracle on database files by addi-
tionally mounting the volume in the following way:

mount -F vxfs -o convosync=direct,mincache=direct,nodatainlog,delaylog \
	 /dev/vx/dsk/$DG/$VOLNAME /$MOUNTPOINT

This will convert all synchronous I/O to direct I/O, which is unbuffered and therefore
does not taint the operating system's buffer cache. It will also turn down the use of the
file system's intent log in favor of the database's own transaction log.

One thing that should be obvious but may need to be mentioned: In order to exclude
side effects due to caching on the side of the operating system, you must run all bench-
marks on a freshly mounted file system (unless, of course, you are benchmarking a raw
device). Unmounting the file system every time and remounting it before every test can
be a tedious task, so we suggest a smarter way: Before you run the benchmark, change
your working directory to the mount point that you want to test. If your current working
directory is inside the mount point, then that file system cannot be unmounted. But the
system does not know that. So if you now enter the umount command, the system will
flush all the buffers that relate to the file system you are trying to unmount. Then, after
all the buffers have been flushed and invalidated, the umount system call will fail. You are
left with a file system that has nothing buffered in the system's cache without having to
actually remount it.

And if you redirect stderr to /dev/null, you don't even get the error message. Here's
an example of the command:
# cd $MOUNTPOINT	# Make umount fail if tried on $MOUNTPOINT
umount $MOUNTPOINT 2>/dev/null # Flush all buffers: no caching side effects
vxbench -w rand_read -i iocount=50,iosize=8,maxfilesize=35g /stripe/DATAFILE

468

Tuning Storage Foundation

Technical Deep Dive

Performance 13.3	 Tuning

Overview and Disclaimer13.3.1	

One of the most prominent marketing features for all kinds of computer equipment and
software is a vast array of mutually interdependent figures collectively called "perfor-
mance". This ominous feature is usually measured by some software suite in what is called
a "benchmark". Both words, performance as well as benchmark, are not well defined at all,
mostly because performance and everything related to it is such a multi-faceted issue. This
chapter will highlight performance from various perspectives. It will help you define what
kind of performance you actually need, how to measure it and possible ways to increase it
or, more likely, to prevent doing something that stands in the way of good performance. Be
warned that it is not reliable possible to guide anyone towards achieving high performance
in their particular setup. Too many variables influence each other. But anybody looking for
ways to optimize their system's performance will find lots of useful information in this
chapter, and with a little bit of luck, it may hint you towards the bottleneck that has so far

throttled your system's throughput.

Identifying Performance and 13.3.2	 Performance
Requirements

Since tuning reminds many of cars and motorbikes let's imagine that we are not run-
ning a data center but a car racing team. We do so not for the sake of a demoralizing the
reader (running race cars is more fun than running computers) but also, as you will see,
because it turns out the two fields are very comparable in surprisingly many fields.

In the following pages we will help you identify your exact needs. This question is
harder to answer than you may think. Once you have found out what the goal is, you can
use your technical, managerial, and social skills reach that goal. So here's the analogy:

A car racing team and a data center operation are similar in several ways because
both

1.	 Use leading edge hardware and personnel.

It is very hard to win a car race with an old vehicle and
an untrained or unmotivated team, just as it is hard
to get decent and reliable performance from old com-
puter systems and an untrained or unmotivated team.

2.	 Employ extremely complex setups with multiple interdependencies. Only if all

469

Performance Tuning

of the parameters are set correctly will the computer – or the car – be competitive.
Unfortunately, in race car setup as well as in computer setup, it is not at all easy to find the
reason for poor performance, as there are so many possibilities and they are so intimately
intertwined. There is never a magic bullet to make any complex setup fast! But there
are dozens of areas that can make it slow!

Some parameters that are interdependent in race cars:
Tire pressure, tire rubber mixture and construction,
spring rate, damper rate, strut, toe-in, down force,
weight, grip, engine power, track layout, tarmac type,
temperature, average cornering speed etc.

Some parameters that are interdependent in data
center applications: Memory, CPU cores, degree of
parallelization, latency, queue lengths, IOPS, I/O sizes,
throughput, number of users, response times, etc.

3.	 Must cope with certain budget restrictions, which may be alleviated by over per-
forming

A race team gets money from the sponsors and from
winning races. A successful team gets more prize
money and attracts more sponsors and high-end
staff. A data center has a limited budget, but if the
operations run particularly well, the company can
expand and pass more money towards the data center.
Unfortunately, in the current global economic climate
this often is not the case. Many managers take the
short-sighted approach of demanding ever increasing
shareholder value, thereby disgusting their staff and
leading to eventual meltdown. We hope and trust it is
a matter of time until this is fixed.

4.	 Are multi-layered, with each layer not necessarily pursuing the same goal

While the race car driver may just want to arrive first
and have fun doing so, the team management usu-
ally pursues longer-term goals: to ultimately win the
championship in order to attract more sponsors; the
sponsors, in turn, would prefer the team to display
excellent craftsmanship and fairness in order to better
convey their message. And the team owner may not be
looking at just this year's championship, but may have
much longer-term goals. In a data center, the typical
administrator wants to shut up the machine as much
as possible so he can do more interesting things or
handle more machines. The application owners want
their application to run at optimum speed and do not
care about the others. The SAN admin wants every-
body to use the same kind and size of LUN to reduce
the complexity. The network and security people would

470

Tuning Storage Foundation

like to install fingerprint and retina scanners in every
network node and forward packets only after thor-
ough inspection concerning all conceivable security
holes discovered since 1975. The data center manager
wants the whole thing as cheaply as possible and
often couldn't care less about current technological
and physical limits, especially when these get in the
way of reducing cost.

5.	 Are confronted with sudden unexpected developments so they must be able to react
to quickly and with great flexibility.

A race can be turned upside-down by a yellow-phase,
a sudden onset of rain, a technical defect, driver errors
and so on. A data center must cope with unexpect-
edly high user demand, technical defects and outages,
administrator errors etc.

Even with all the similarities, there is also one big difference between a race car team
and data center staff: races are only held at certain times, while data center applications
are usually 24/365 due to the ubiquity of internet applications.

So here is the question: What is performance? What kind of performance do we wish
to attain? This is usually connected to another question: Who are we optimizing for? The
administrator? The manager? The SAN group? The network and security group? (Hint: the
application owner is a good, but often forgotten, candidate in the real world, although the
other candidates are just as valid). This is the first question that we need to clarify, lest
we optimize for something impressive yet irrelevant. It sounds trivial, but in fact it is very
often overlooked.

So think about the following things that you might be trying to reach. Each of them is
a completely different, yet valid, aspect of performance:

Shortest time to execute a given task

That's obvious. It's like winning the race. But it may be
prohibitively costly or very hard to administer.

Lightest system load to execute a given task

Sounds good, too. But it does not help if the machine
is idling anyway, or it may cause too long a response
time.

Largest number of users served

This goes into the cost-saving direction, with a bitter-
sweet note that response time may be underrepre-
sented

Lowest overall cost solution

The full emphasis on cost-saving

Shortest response time to the user

471

Performance Tuning

What the users want (but they don't want to pay a
lot for it).

Now think about the following factors that might contribute to improving overall
"performance":

CPU clock

Costs money

Number of CPU cores

Costs money, especially license fees

Parallelity of the problem set

Can't help it much…

Parallelity of the implementation (software)

Requires really smart developers

I/O operations per second of the machine

Costs money

Size of the I/Os

Requires at least some degree of data locality in the
application, ideally sequential access

Latency of I/O

Requires money or smart solution to reduce

On a more hardware-oriented technical level, the following aspects:

Protocols used

Can't usually help it much

Long-range latencies

Requires smart solution or additional bunker site close
by that holds just the logs and replicates asynchro-
nously from there to the remote site

Error rates and recovery mechanisms

Can't usually help it much; they are defined by the
transport medium's physical properties and the pro-
tocol used…

Timeout values

Can tweak them somewhat, but usually not much

And on a more global level, these:

Number of systems connected to a storage array

Costs money to reduce

472

Tuning Storage Foundation

Frame rate for SAN switches

Costs money to increase

Distance of the remote disaster recovery site

Can't usually help it much…

As you see, there are many parameters and optimization goals possible, so there can
not be one performance tuning guide that does it all right. One could argue that in the
context of this book at least, it should be clear that what is needed is a performance tuning
guide to accelerate I/Os, right? It turns out that even this apparently simple goal is actually
manifold: The first problem that springs to mind is the use of shared SAN resources. If user
A makes his volumes run faster, then user B typically gets less performance. Storage arrays
are usually saturated with I/O requests, and the more some egotistic application owner or
admin optimizes his "own" LUNs, the more I/Os per second are loaded onto the shared disk
spindles. But that is only part of the problem: User A will also tend to increase the volume's
latency, because in most cases administrators will try to increase the striping factor in order
to gain performance. Increasing the striping factor distributes the load across more LUNs,
but also increases read latency and CPU and channel overhead. It will also degrade overall
performance of the storage array instead of improving it because disk heads have to move
more (because load is distributed across more targets) and the storage array's read-ahead
cache is not used as efficiently. So in short: one cannot even say that "speeding up the
volumes" is a good thing.

Alternatively, you may want to think about using storage checkpoints to speed up your
backups. Storage checkpoints have been extensively covered in the chapter about point-
in-time copies. They can speed up backups by allowing you, in combination with Oracle's
RMAN (Recovery MANager) utility, to feed just those blocks into RMAN that have been
updated since the last backup. But this feature is not part of the base license, so it may
cost a lot of money to do implement a solution based on storage checkpoints. Finally, even
if you manage to increase I/O throughput without degrading everybody else's you may not
have an I/O-bound problem, but a memory-bound problem. In that case, it would be so
much more worthwhile to just add memory to the system.

But the real problem comes when you look at how complex the I/O subsystem alone
has become. It is next to impossible to know all the limiting factors in the chain from
the application down to the disk hardware, but here's at least a list of some of the more
important ones:

OS queue length and buffer sizes»»
OS I/O parallelity»»
HBA frame buffers»»
Buffer credits HBA <–> intermediate nodes <–> storage array»»
Fabric speed and error rates»»
Storage array (SA) front end controller HBA buffers»»
SA back end controller queue length»»
SA disk queue length and on-disk controller hardware»»
SA disk rotational speed»»
SA disk type (S-ATA tends to be slow in mixed read-write operation)»»

473

Performance Tuning

The bottom line is that optimization is best done as high up as possible: the people
who write the software have control over the amount, frequency, and locality of data they
read. If they fail to deliver a smart approach to a problem, the next layer is usually the
database staff. More often than not, database staff think differently from systems staff, so
it may be hard to talk to them. (Systems people – at least the good ones – tend to rely on
strict logic and prefer to understand exactly what is going on. Database people are usually
very happy that their database gives them some kind of table or view for everything they
want to know, and they often do not question the origin of the values in these tables, not
their exact meaning). Operating systems and their staff is stuck at the low end of the food
chain, and is often accused, but rarely guilty, of delivering under performing I/O systems.
So what we can at least do here is provide you with a set of argumentative guidelines so
that you can redirect the tuning efforts to where they belong: higher up the food chain,
towards the database and application.

Comparative 13.3.3	 Benchmarks of Various Volume
Layouts

Just to give you a rough idea of how much or how little performance can be gained by
varying the volume layout versus varying the access pattern we have done a series of
benchmarks using vxbench on the test bed graciously provided by the fine people of Sun
microsystems in Langen, Germany. The machine was a 16-core SPARC LDOM which was
redundantly connected to a Hitachi 9980 storage array. The benchmarks were done on
varying volumes, each created to the same size (100g) and with a vxfs file system on it.
Only default parameters were used, the number of stripe columns (ncol) is 5. The volume
layout is shown in the left most column. The kind of access is given in the next column:
read and write (which are sequential), and rand_read and rand_write (random). The next
column is the size of the individual I/Os in KBytes. It is not the blocksize of the file system
or volume! The columns labeled PARLL contains the parallelity, i.e. the number of threads
concurrently accessing the volume. The speed is output in the next column, and is given in
MB/sec. The columns for time, sys, and user stand are given in seconds and are equivalent
to the values output by the UNIX time command.

Two runs were executed, with different sort orders. This first run is ordered by layout,
then I/O size, then access type. The second one is ordered by layout, then access type, then
I/O size.

We urge you to look at how excruciatingly low the throughput in small random reads
is. It is often below one MB/sec. Don't forget that this is the way that most data base
accesses are one! Retrieving data from any table that is significantly larger than the physi-
cal machine memory almost always requires at least one, but usually several, random reads
(the database needs to read several nodes of the index tables first before it knows which
block or blocks the data resides on).

Concat
Layout Access BKSZ PARLL Speed Time Sys User
 concat write 8 32 23.91 0.082 0.02 0.00

474

Tuning Storage Foundation

 concat rand_write 8 32 17.86 0.109 0.02 0.00
 concat read 8 32 25.94 0.075 0.02 0.00
 concat rand_read 8 32 1.58 1.240 0.02 0.00
 concat write 64 32 96.16 0.162 0.02 0.00
 concat rand_write 64 32 78.81 0.198 0.02 0.00
 concat read 64 32 101.05 0.155 0.02 0.00
 concat rand_read 64 32 8.88 1.760 0.02 0.00
 concat write 512 32 142.06 0.880 0.02 0.00
 concat rand_write 512 32 138.93 0.900 0.02 0.00
 concat read 512 32 139.06 0.899 0.02 0.00
 concat rand_read 512 32 23.22 5.384 0.02 0.00
 concat write 1024 32 147.19 1.698 0.03 0.00
 concat rand_write 1024 32 146.47 1.707 0.03 0.00
 concat read 1024 32 140.43 1.780 0.02 0.00
 concat rand_read 1024 32 26.90 9.294 0.03 0.00

Stripe
Layout Access BKSZ PARLL Speed Time Sys User
 stripe write 8 32 23.19 0.084 0.02 0.00
 stripe rand_write 8 32 17.56 0.111 0.02 0.00
 stripe read 8 32 26.46 0.074 0.02 0.00
 stripe rand_read 8 32 1.08 1.817 0.02 0.00
 stripe write 64 32 95.42 0.164 0.02 0.00
 stripe rand_write 64 32 80.59 0.194 0.02 0.00
 stripe read 64 32 95.01 0.164 0.02 0.00
 stripe rand_read 64 32 7.11 2.197 0.02 0.00
 stripe write 512 32 198.63 0.629 0.09 0.00
 stripe rand_write 512 32 193.25 0.647 0.08 0.00
 stripe read 512 32 229.04 0.546 0.09 0.00
 stripe rand_read 512 32 28.22 4.430 0.09 0.00
 stripe write 1024 32 220.81 1.132 0.16 0.00
 stripe rand_write 1024 32 207.11 1.207 0.17 0.00
 stripe read 1024 32 243.37 1.027 0.15 0.00
 stripe rand_read 1024 32 29.16 8.574 0.14 0.00

Mirror
Layout Access BKSZ PARLL Speed Time Sys User
 mirror write 8 32 21.58 0.091 0.03 0.00
 mirror rand_write 8 32 14.76 0.132 0.04 0.00
 mirror read 8 32 24.61 0.079 0.02 0.00
 mirror rand_read 8 32 1.09 1.792 0.02 0.00
 mirror write 64 32 83.64 0.187 0.04 0.00
 mirror rand_write 64 32 72.51 0.215 0.04 0.00
 mirror read 64 32 98.67 0.158 0.02 0.00
 mirror rand_read 64 32 8.28 1.888 0.02 0.00

475

Performance Tuning

 mirror write 512 32 138.48 0.903 0.04 0.00
 mirror rand_write 512 32 133.18 0.939 0.05 0.00
 mirror read 512 32 138.95 0.900 0.02 0.00
 mirror rand_read 512 32 20.69 6.042 0.03 0.00
 mirror write 1024 32 144.94 1.725 0.04 0.00
 mirror rand_write 1024 32 142.19 1.758 0.05 0.00
 mirror read 1024 32 143.12 1.747 0.03 0.00
 mirror rand_read 1024 32 27.01 9.254 0.03 0.00

Stripe-mirror
Layout Access BKSZ PARLL Speed Time Sys User
 stripe-mirror write 8 32 16.68 0.117 0.04 0.00
 stripe-mirror rand_write 8 32 10.69 0.183 0.04 0.00
 stripe-mirror read 8 32 22.63 0.086 0.02 0.00
 stripe-mirror rand_read 8 32 1.03 1.900 0.02 0.00
 stripe-mirror write 64 32 57.56 0.271 0.04 0.00
 stripe-mirror rand_write 64 32 72.70 0.215 0.04 0.00
 stripe-mirror read 64 32 94.23 0.166 0.02 0.00
 stripe-mirror rand_read 64 32 7.54 2.071 0.02 0.00
 stripe-mirror write 512 32 95.19 1.313 0.17 0.00
 stripe-mirror rand_write 512 32 92.51 1.351 0.18 0.00
 stripe-mirror read 512 32 221.67 0.564 0.09 0.00
 stripe-mirror rand_read 512 32 26.50 4.717 0.10 0.00
 stripe-mirror write 1024 32 111.04 2.251 0.34 0.00
 stripe-mirror rand_write 1024 32 112.10 2.230 0.34 0.00
 stripe-mirror read 1024 32 244.69 1.022 0.15 0.00
 stripe-mirror rand_read 1024 32 26.73 9.354 0.18 0.00

This is the output of the second run, this time ordered by access type rather than I/O
size to make it more easy to compare the influence of the relative I/O sizes.

Concat
Layout Access BKSZ PARLL Speed Time Sys User
 concat write 8 32 24.68 0.079 0.02 0.00
 concat write 64 32 98.58 0.159 0.02 0.00
 concat write 512 32 144.78 0.863 0.02 0.00
 concat write 1024 32 146.85 1.702 0.03 0.00
 concat rand_write 8 32 17.88 0.109 0.02 0.00
 concat rand_write 64 32 79.23 0.197 0.02 0.00
 concat rand_write 512 32 137.94 0.906 0.03 0.00
 concat rand_write 1024 32 145.59 1.717 0.03 0.00
 concat read 8 32 25.89 0.075 0.02 0.00
 concat read 64 32 93.67 0.167 0.02 0.00
 concat read 512 32 135.17 0.925 0.02 0.00
 concat read 1024 32 140.03 1.785 0.02 0.00

476

Tuning Storage Foundation

 concat rand_read 8 32 0.44 4.467 0.02 0.00
 concat rand_read 64 32 2.79 5.595 0.02 0.00
 concat rand_read 512 32 14.34 8.714 0.02 0.00
 concat rand_read 1024 32 34.88 7.168 0.03 0.00

Stripe
Layout Access BKSZ PARLL Speed Time Sys User
 stripe write 8 32 22.66 0.086 0.02 0.00
 stripe write 64 32 94.09 0.166 0.02 0.00
 stripe write 512 32 209.06 0.598 0.08 0.00
 stripe write 1024 32 221.14 1.131 0.15 0.00
 stripe rand_write 8 32 17.71 0.110 0.02 0.00
 stripe rand_write 64 32 81.39 0.192 0.02 0.00
 stripe rand_write 512 32 189.98 0.658 0.09 0.00
 stripe rand_write 1024 32 202.33 1.236 0.17 0.00
 stripe read 8 32 26.00 0.075 0.02 0.00
 stripe read 64 32 97.31 0.161 0.01 0.00
 stripe read 512 32 223.65 0.559 0.08 0.00
 stripe read 1024 32 234.69 1.065 0.16 0.00
 stripe rand_read 8 32 0.62 3.147 0.02 0.00
 stripe rand_read 64 32 4.51 3.465 0.02 0.00
 stripe rand_read 512 32 23.95 5.220 0.09 0.00
 stripe rand_read 1024 32 44.35 5.637 0.16 0.00

Mirror
Layout Access BKSZ PARLL Speed Time Sys User
 mirror write 8 32 10.92 0.179 0.04 0.00
 mirror write 64 32 79.78 0.196 0.03 0.00
 mirror write 512 32 130.31 0.959 0.04 0.00
 mirror write 1024 32 138.40 1.806 0.05 0.00
 mirror rand_write 8 32 14.81 0.132 0.04 0.00
 mirror rand_write 64 32 60.45 0.258 0.04 0.00
 mirror rand_write 512 32 132.12 0.946 0.05 0.00
 mirror rand_write 1024 32 141.07 1.772 0.05 0.00
 mirror read 8 32 24.12 0.081 0.02 0.00
 mirror read 64 32 91.07 0.172 0.02 0.00
 mirror read 512 32 136.33 0.917 0.02 0.00
 mirror read 1024 32 140.23 1.783 0.03 0.00
 mirror rand_read 8 32 0.49 3.976 0.02 0.00
 mirror rand_read 64 32 4.27 3.660 0.02 0.00
 mirror rand_read 512 32 20.06 6.231 0.03 0.00
 mirror rand_read 1024 32 29.22 8.556 0.03 0.00

477

Performance Tuning

Stripe-mirror
Layout Access BKSZ PARLL Speed Time Sys User
 stripe-mirror write 8 32 16.07 0.122 0.04 0.00
 stripe-mirror write 64 32 78.11 0.200 0.04 0.00
 stripe-mirror write 512 32 93.56 1.336 0.17 0.00
 stripe-mirror write 1024 32 112.78 2.217 0.33 0.00
 stripe-mirror rand_write 8 32 8.86 0.220 0.04 0.00
 stripe-mirror rand_write 64 32 68.97 0.227 0.04 0.00
 stripe-mirror rand_write 512 32 97.46 1.283 0.18 0.00
 stripe-mirror rand_write 1024 32 102.66 2.435 0.34 0.00
 stripe-mirror read 8 32 22.21 0.088 0.02 0.00
 stripe-mirror read 64 32 90.14 0.173 0.02 0.00
 stripe-mirror read 512 32 207.29 0.603 0.10 0.00
 stripe-mirror read 1024 32 203.92 1.226 0.18 0.00
 stripe-mirror rand_read 8 32 0.89 2.200 0.03 0.00
 stripe-mirror rand_read 64 32 4.79 3.263 0.02 0.00
 stripe-mirror rand_read 512 32 20.92 5.975 0.10 0.00
 stripe-mirror rand_read 1024 32 31.98 7.818 0.18 0.00

Summary13.3.4	
We hope to have given a reasonable overview over the various tuning possibilities that
come with Storage Foundation. We have to admit that there were times when it was much
more fun to optimize volumes: Raw disks have such a charming amount of intricacies: you
could run into any limit: queue size on disk and in the controller, cache size on disk and in
the controller and in the OS, cache entry size on disk versus I/O size on the SCSI bus, hot
spots and so on. Tuning a data center machine was like the fine art of preparing a race car:
If the setup was completely optimal you had a chance of winning the race. But if any of a
(large) number of parameters was wrong – let alone several – there was no way you could
have gotten decent performance.

With SAN storage that fine art was lost. Everyone just allocated storage from the box,
and the box did all the thinking. Physics suddenly seemed irrelevant.

But now the discrepancy between disk head speed, disk transfer rate, and disk size has
grown so much out of proportion (and is still continuing to do so), that physics has come
back big time. So let's all be a little reasonable and keep in mind that no storage array can
speed up random reads as long as it uses rotating disks for backing store.

The number of disks times the number of transactions per second is the upper limit to
all I/O activity on your storage array, and that number hasn't kept up remotely with Moore's
law. In addition, we are probably not the only ones using the storage array, so if we opti-
mize the volumes to maximize our own performance, it is very likely that performance for
everybody else is deteriorating. The others will then try to optimize their volumes to gain
performance, and eventually everybody's performance becomes lousy.

If you have performance problems, it is most likely that you are simply expecting too
much from your storage array. To modify an old proverb: "It's the disk drives, stupid!"

